开启线上直播
订阅更多信息
更多流量 更易传播
产品详情
30m3/d一体化生活污水处理设备
买鲁盛公司生产的30m3/d一体化生活污水处理设备,厂家送货上门,派技术安装。
我们的设备全国通用,全国联保,使用放心无忧虑。
一体化地埋设备、气浮机、二氧化氯发生器、加药装置、沉淀池、玻璃钢化粪池、一体化提升泵站、机械格栅、板框压滤机、叠螺污泥脱水机等污水处理设备各种型号都有。
序批式反应器
反应物在封闭式反应器内“--罐- -罐”地进行反应操作,反应完成卸料后,再进料进行下一批的生产,也称为分批操作或序批操作,一般用于小批量、多品种的均质液相反应系统。序批反应器是在非稳态条件下操作的,尽管容器中的成分随反应时间而变化,但是反应器内的成分在任一时刻都是均匀的,浓度温度处处相等。在废水处理中,序批操作过程就在反应过程中既无水流入,也无水流出(也就是,水流流入,进行反应,然后排出,如此重复循环)。
序批反应器操作方式灵活,设备投资省,同一设备可以生产不同品种,具有反应速率高,出水水质稳定,容易控制污泥膨胀等连续流反应器所*的优点,已经广泛应用于中小规模污水处理厂。在污废水的生物处理中,序批反应器还经常被选用于未经实践检验的新工艺的研发、化学反应动力学研究以及各单因素试验,如短程硝化反硝化、厌氧氨氧化、好氧颗粒污泥等污水处理新工艺新技术都是基于序批反应器提出并实现的。
1)进水阶段
运行周期从废水进入反应器开始。进水时间由设计人员确定,取决于多种因素包括设备特点和处理目标等。进水阶段的主要作用在于确定反应器的水力特征。如果进水阶段时间短,其特征就像是瞬时工艺负荷,系统类似于多级串联构型的连续流处理工艺,所有微生物短时间内接触高浓度的有机物及其他组分,随后各组分的浓度随着时间逐渐降低;如果进水阶段时间长,瞬时负荷就小,系统性能类似于*混合式连续流处理工艺,微生物接触到的是浓度比较低且相对稳定的废水。
2)反应阶段
进水阶段之后是反应阶段,微生物主要在这一阶段与废水各组分进行反应。实际上,这些反应(即微生物的生长和基质的利用过程)在进水阶段也在进行,随着污水流人,微生物对污染物的利用也即开始。所以进水阶段应该被看作“进水+反应”阶段,反应在进水阶段结束后继续进行。完成一一定程度的处理目标需要一定的反应过程。如果进水阶段短,单独的反应阶段就长;反之,如果进水阶段长,要求相应的单独反应阶段就短,甚至没有。由于这两个阶段对系统性能影响不同,所以需要单独解释。
在进水阶段和反应阶段所建立的环境条件决定着发生反应的性质。例如,如果进水阶段和反应阶段都是好氧的,则只能发生碳氧化和硝化反应。此时SBR的性能介于传统活性污泥法和*混合活性污泥法之间,取决于进水阶段的长短。如果只进行混合而不曝气,在硝态氮存在的条件下就会发生反硝化反应。如果反应阶段发生硝化,产生硝酸盐,并且在周期结束时仍留在反应器中,那么在进水阶段和反应阶段初期增加一个只混合而不曝气的间隙,就可以使SBR法类似于连续流A/O系统。如果在反应阶段后期增加一个只混合而不曝气的间隙,SBR法就变得与Berdenpho工艺类似。另一方面,如果SBR法在比较短的SRT下运行,没有硝酸盐产生,在进水阶段和反应阶段只搅拌而不曝气,就可以筛选出聚磷菌,SBR法就变得与phoredox或An/O连续系统类似。这几个例子清楚地表明,SBR法可以通过调整设计和运行方式来模拟多种不同的连续处理工艺。
3)沉淀阶段
反应阶段完成之后,停止混合和曝气,使生物污泥沉淀,完成泥水分离。与连续处理工艺相同,沉淀有两个作用:澄清出水达到排放要求和保留微生物以控制SRT。剩余污泥可以在沉淀阶段结束时排除,类似于传统的连续处理工艺;或者剩余污泥可以在反应阶段结束时排出,类似于Garrett工艺。
4)排水阶段
不管剩余污泥在什么阶段排出,经过有效沉淀后的上清液作为出水在排放阶段被排出,留在反应器中的混合液用于下一个循环。如果为了向进水阶段的反硝化提供硝酸盐而保留了相对于进水大得多的液体和微生物,那么所保留的这部分就类似于连续流处理中的污泥回流和内循环工艺。
5)闲置阶段
闲置阶段主要是提高毎个运行周期的灵活性。闲置阶段对于多池SBR系統尤其重要,它可以协同迸行几个操作以达到*处理效果。闲置阶段是否迸行混合和曝气取决于整个工艺的目的。闲置阶段的长短可以根据系統的需要而変化。闲置阶段之后就是新的进水阶段,新一轮循环就启动了。
在一个逅行周期中,各个阶段的送行时间、反应器内混合液体枳的変化以及送行状态等都可以根据具体污水性质、出水质量与送行功能要求等灵活掌握。 比如在进水阶段,可按只进水不曝气(搅拌或不搅拌)方式送行,也可按边进水水边曝气方式运行,前者称限制性曝气,后者称非限制性曝气。在反应阶段,可以始終曝气;为了生物脱氮也可曝气不搅拌,或者曝气搅拌交替进行;其剩余污泥量可以在闲置阶段排放,也可在排水阶段或反应阶段后期排放。可见,対于某——单一SBR来说,不存在空间上控制的障碍;在时间上,SBR也可灵活的凋整程序控制器,控制系和风机的开关,迸行有效的变换,达到多种功能。这种灵活性是序批式反立器有別于连续流反立器的*犹点。
SBR法的分类
SBR法主要有4种分类方:
1)按进水方式分
按进水方式可分为序批进水式和连续进水式。
序批进水方式,由于沉淀阶段和排水阶段不进水,所以较易保证出水的水质,但需几个反应池组合起来运行,以处理连续流入污水处理厂的污废水。连续进水方式,虽可采用一个反应池连续地处理废水,但由于在沉淀阶段和排水阶段污水的流入,会引起活性污泥上浮或与处理水相混合,所以可能使处理水质变差。如果在沉淀阶段和排水阶段减少进水水量,可减少其影响。
*混合序批反应器内有机物浓度、MLSS浓度以及溶解氧浓度较为均匀。循环式水渠型反应器溶解氧随混合液的流向变化而变化,但有机物浓度、MISS浓度在各点大致也是均匀的。
生物硝化
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
由上式可知:
(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;
(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:
(1)pH值;当pH值为8.0~8.4时(20℃),硝化作用速度较快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;
(2)温度;温度高时,硝化速度快。亚硝酸盐菌的适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;
(3)污泥停留时间;硝化菌的增殖速度很小,其大比生长速率为 =0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间 必须大于硝化菌的小世代时间 。在实际运行中,一般应取 >2 ,或 >2 ;
(4)溶解氧;氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;
(5)BOD负荷;硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
生物反硝化
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例。
由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。
影响反硝化的主要因素:
(1)温度;温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;
(2)pH值;反硝化过程的pH值控制在7.0~8.0;
(3)溶解氧;氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);
(4)有机碳源;当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
连续全混反应器
连续全混反应器由一个有进流和出流的容器组成,反应物连续流人反应器,混合物连续流出反应器,是一种开放式反应器。反应器通常在稳态条件下运行,反应器内物料充分混合,物质含量在整个反应器内均匀*,排出物的成分与反应器中的成分相同,反应器内的反应物浓度不随时间变化,也不随空间变化;通常情况下(但不一定全是) ,其进出流量平衡。理想状态下,对只含单体的情况,假设流体相中的物料混合都非常迅速,从而各组分在整个容器中的浓度都是均匀的;对含有多种流体的容器假设混合*,并且对每一种流体其混合都是瞬间完成的,因此流出反应器中的产物组分浓度等于该物料在整个反应器内的浓度。
*您想获取产品的资料:
个人信息: